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We have developed the deposition and studied the electrical characteristics, microstructure and thermal 
reliability of Ru-based contacts on n-type GaN as well as on AlGaN/GaN HEMT heterostructure. 
Ru, RuO2 and Ru-Si-O layers were deposited by reactive magnetron sputtering and annealed up to 900 °C. 
Amorphous, conducting RuSiO4 contacts with their extremely low reverse currents and thermal stability 
up to 900 °C, show great potential for use as Schottky contacts to n-type GaN and gate electrodes for Al-
GaN/GaN HEMT in high temperature, high power applications.  

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Reliable Schottky contacts for AlGaN/GaN high electron mobility transistor (HEMT) should use metalli-
sation that is highly conductive, stable in contact with GaN, and capable to withstand treatments at ele-
vated temperatures during device processing and further operation. Targeting high temperature applica-
tions we have chosen to study the properties of ruthenium based metallisations: elemental Ru, RuO2 and 
Ru-Si-O. Recently several studies have demonstrated the applicability of oxidised Ru and RuO2 as 
Schottky contact to n-GaN [1, 2]. Both Ru and RuO2 are high melting point materials, characterised by 
low bulk resistivity and large work function. The feasibility of conducting, amorphous ternary Ru-Si-O 
material has been recently reported by Gasser et al. [3]. If thermally stable, the amorphous microstruc-
ture is likely to be the most effective in preventing interfacial reactions in the contact region. 
 In this paper we compared Ru, RuO2 and Ru-Si-O Schottky contacts fabricated on n-GaN and Al-
GaN/GaN HEMT heterostructure. Special attention was paid to the deposition process, which was opti-
mised in order to achieve low resistivity layers and good adhesion to the semiconductor substrate. 

2 Experimental details 

Thin Ru, RuO2 and Ru-Si-O films were prepared by reactive magnetron sputtering in DC mode from 
either Ru (Ru and RuO2 films) or Ru1Si1 (Ru-Si-O film) target in Ar-O plasma. The films were deposited 
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on n-type GaN epilayers doped to 2-5x1017 cm–3 and undoped AlGaN/GaN heterostructures with 30 nm 
thick AlGaN film grown by MOCVD method on sapphire. Substrates were held at room temperature. 
Crucial point during the deposition was to optimise the O2/Ar ratio and the working pressure with regard 
to the film resistivity and adhesion to the substrate. Film thickness ranged from 50 to 100 nm. The sam-
ples were annealed at temperatures up to 900 °C in either N2 or O2 flow. For I-V measurements conven-
tional lift-off photolithography was applied. Ti/Al metallisation annealed at 800 °C was used as the oh-
mic contact. The resistivity of thin metallisation films deposited on semiinsulating GaN was measured 
using 4-point-probe. 2 MeV 4He+ Rutherford backscattering spectrometry (RBS), secondary ion mass 
spectrometry (SIMS) and X-ray diffraction (XRD) with Fe Kα radiation were used to analyse the micro-
structure of the contacts before and after heat treatments, while apparent Schottky barrier height was 
extracted from I-V measurements. Such procedure enabled us to determine thermal stability of these 
contacts in terms of microstructure and electrical parameters.  

3 Results and discussion 

3.1 Resistivity and composition of Ru-based films  

In this study the correlation between the resistivity and phase structure of Ru-based films was of primary 
concern. As deposited Ru films were polycrystalline. The resistivity of Ru film was 2.0x10–5 

Ωcm and 
stabilised at a value 3.5x10–4 

Ωcm at 20 % of oxygen. A plot of resistivity of Ru-O metallisation versus 
oxygen partial pressure is shown in Fig. 1. The total pressure during the deposition was 1x10–2 mbar. 
Figure 2a shows the RBS spectra of the corresponding Ru-O films. Changing the oxygen content form 
20 to 50 % did not influence the reading. The atomic concentration of each element was calculated from 
RUMP simulation of RBS spectra (Fig. 2b). These showed that with only 20% of O2 the RuO2 structure 
was formed and the increase in oxygen’s concentration did not change the situation much. It should be 
pointed out that the lower oxygen concentration resulted also in a better adhesion of the film. With the 
50% of oxygen the films were peeling off. XRD analysis indicated that RuO2 films were nanocrystalline. 
The resistivity of oxygen-free Ru-Si film was 4.5x10–4 

Ωcm. It turned out that the resistivity of the Ru-Si-
O after the initial increase, with the increase of O2 content in the gas mixture, got saturated at the level of 
1.3x10–2 Ωcm (Fig. 1). The depositions  of Ru-Si-O films were made at a pressure 5x10–2 mbar. The films 
exhibited excellent adhesion to the substrate. Figures 2c and 2d show the results of RBS measurements 
and RUMP calculations for Ru-Si-O films. The composition of the oxygen-free film corresponds roughly 
to that of Ru1Si1 target. It can be clearly noticed that only with 10% of O2 in the sputtering gas, the ob-
tained film was actually RuSiO4. The oxygen-saturated phase was XRD amorphous. Our results are in 
agreement with those of Gasser [3].  

Fig. 1   The resistivity of Ru-O and Ru-Si-O metallisations as a function of the oxygen partial pressure during 
reactive sputter deposition from Ru and Ru1Si1 target, respectively. 
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3.2 Thermal stability  

In order to investigate thermal stability of obtained films SIMS and resistivity measurements of annealed 
Ru/GaN, RuO2/GaN, RuSiO4/GaN structures were carried out. Furthermore I-V characteristics of (Ru, 
RuO2, RuSiO4)/AlGaN/GaN heterostructures were measured. Such approach enabled us to observe 
changes at a film/substrate interface and electrical parameters of the junction that took place while in-
creasing the temperature. Figure 3 presents SIMS profiles of as-deposited and annealed contact struc-
tures. Ru/GaN and RuO2/GaN structures demonstrated no signs of the interfacial reaction up to 800°C 
while RuSiO4/GaN interface was stable up to 900 °C. The resistivity of Ru-based films displayed only 
small fluctuations, as shown in Fig. 4. Basing only on this information it can be stated the Ru-based films 
exhibit excellent thermal stability both in terms of microstructure and resistivity. In order to determine 
the suitability of these films for a gate electrode for AlGaN/GaN HEMT devices, I-V measurements 
were carried out (Fig. 5). 
 

Fig. 2 RBS spectra and percent concentration of elements in Ru-O (a, b) and Ru-Si-O (c, d) films deposited on sili-
con. 
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three structures showed suitability of Ru-based films for Schottky contacts to AlGaN/GaN heterostruc-
ture. Of the investigated contacts, RuSiO4 showed superior thermal stability, which combined with low 
resistivity and stability of the contact/substrate region at high temperatures, makes it the perfect choice 
for AlGaN/GaN HEMT devices targeting high-temperature applications. 
Further investigations will focus on the optimisation of the semiconductor surface treatment to increase 
the effective Schottky barrier height.  
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 SIMS depth profiles of Ru-based metallisations on GaN: a) as-deposited Ru film, b) as-deposited RuO2 film, 
c) as-deposited RuSiO4 film, d) Ru contact annealed at 800 °C, e) RuO2 contact annealed at 800 °C, f) RuSiO4 con-
tact annealed at 900 °C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 The resistivity of Ru, RuO2 and RuSiO4 films as a function of annealing temperature. 
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Fig. 5 I-V characteristics of Ru-based contacts to AlGaN/GaN HEMT heterostructures: a) Ru contact, b) 
RuO2 contact and c) RuSiO4 contact. 
 
 

Table 1 The apparent Schottky barrier heights of Ru-based contacts to n-GaN and AlGaN/GaN structures.  

 
 
 
 
 
 
 
 
 
 

 

4 Conclusions 

It has been demonstrated that Ru-based metallisations are thermally stable in contact with GaN-based 
compounds. In particular, amorphous, conducting RuSiO4 films show extremely low reverse currents and 
thermal stability up to 900 °C, which makes them attractive candidates for thermally stable Schottky 
contacts to n-type GaN and gate electrodes for AlGaN/GaN HEMT in high power devices.   
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