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Abstract
Two-dimensional maps of x-ray diffuse scattering (DS) in a reciprocal space
for a real crystal containing Coulomb deformation centres (clusters or
dislocation loops) were calculated using a new dynamical theory developed
for a crystalline media with homogeneously distributed defects. Such maps
were calculated for both the fundamental, 400, as well as the
quasi-forbidden, 200, reflections of x-rays (CuKα1 radiation) for a binary
crystal (GaAs). They were also discovered experimentally in the GaAs films
heavily doped with Si (up to 1020 cm−3) by means of a Philips three-crystal
diffractometer. The procedure for fitting calculated values of differential DS
to the experimental data enabled not only the integral characteristics of the
structure’s perfection (Debye–Waller static factor, LH , and coefficient of
extinction of radiation due to additional energy losses on defects, µd) but
also the average radius, r̄ , and concentration, n̄, of microdefects (precipitates
to be obtained).

1. Introduction

Diffuse scattering (DS) of x-rays is used nowadays to
investigate structure defects in crystals [1–13] and DS theories
have been developed and generalized by many authors [1, 5–7].
These studies have been dedicated to investigating defects in
massive single crystals as well as in thin films and the surface
layers of crystals [8, 9]. Double- as well as three-crystal
spectrometers (DCS and TCS, respectively) have been used
for experimental investigation of DS in such objects. These
instruments are used in high-resolution diffractometry.

A TCS permits the intensity distribution in the reciprocal
space near reciprocal lattice points (RELP) to be studied.

A new informative and sensitive approach in three-crystal
diffraction theory has recently been developed [14]. In this
work important relations between the integral and differential
intensities of the DS usually observed in the intensity profiles
have been proposed. Such peaks are usually registered by
the TCS at some angular deviations, �θ , of the sample under
investigation from the exact Bragg position.

The aim of this paper was to investigate the real defect
structure in GaAs films heavily doped with Si by analysing
DS pictures registered by high-resolution diffractometry for
both the usual and quasi-forbidden reflections (QFRs). It
was also planned to calculate the isointensity contours of
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Figure 1. TCS scheme for measuring the intensity distribution of
coherent as well as diffuse scattering in a reciprocal space. The
notation: X, x-ray tube; M, monochromator; S, a crystal under
investigation; D, detector. K0 and KH are the wavevectors of the
incident and diffracted waves respectively, H is the reciprocal
lattice vector. �θ and �θ ′ are the angular deviations of the S and A
crystals from their exact reflecting positions respectively. qθ and qθ ′
are the orths of the oblique coordinate system.

two-dimensional maps together with some of their sections
using the previously mentioned theory [14].

Figure 2. Characteristic shapes of isointensity contours for coherent (streaks A, M, S) and diffuse (circle) scattering measured by a TCS for
symmetric Bragg diffraction (a) and an example of a TCS map measured by analyser scanning along the straight line BB′ ‖ qθ ′ at fixed
�θ (b) as well as by a sample S scanning along the straight line CC′ ‖ qθ ′ at fixed �θ ′ (c).

2. Theoretical basis

Three-crystal spectrometry enables the diffuse component of
the total reflectivity to be distinguished by analysing the
character of the intensity distribution in a two-dimensional
intensity map near the RELP [8, 9, 12, 13]. A scheme of a
TCS is shown in figure 1. In our case the monochromator M
was a Bartels-like unit set to obtain three-fold diffraction of
the CuKα radiation. When the crystal S is turned through a
small angle �ϑ(�ϑ � ϑB) the diffraction vector �H rotates
around the zero RELP. As a result of this movement the end
of the wavevector of the diffracted beam, Kh, is displaced
along the axis qϑ , which is perpendicular to �H , for a distance
qϑ = H�ϑ = 2K sin ϑ�ϑ , K = 2π/λ. On the other
hand, rotation of the crystal-analyser A through a small angle
�ϑ ′′(�ϑ ′ < ϑB) enables the diffracted beams to be placed in
various directions near the Kh direction. As a result of this
second movement the working point of the TCS is displaced
along the qϑ ′ axis which is perpendicular toKh on the distance
K ′
h�ϑ

′. So an oblique-angled system of coordinates exists.
The angle between axes connected with diffraction planes in
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Figure 3. Experimental (points) and theoretical (full curves)
diffraction rocking curves (CDR) for sample 1 obtained at �θ ′ = 0.
All of the values are normalized by the intensity corresponding to
the exact Bragg position. Curves 2 and 3 are the coherent
(formula (3)) and diffuse (expression (4)) components respectively.
400 reflection of CuKα1 radiation.

both crystals is equal to π/2 + ϑB . Determining the angle
coordinates of an analyser, �ϑ ′, for a given level of DS
intensity in the TCS map and, knowing the turning angle
of sample �θ , one can determine the position of a working
point in this set of coordinates. Marking the coordinates of
various working points with a fixed DS intensity level one can
plot the contours of equivalent intensity (isointensity lines)
which enables the symmetry in defect deformation fields to be
assessed [15]. One can also plot the isointensity contours for
the coherent scattering by numerical treatment of the coherent
intensity peaks (the so called ‘resolution stars’). As a result of
such procedures the isointensity contours for coherent (streaks)
and diffuse (circle) (figure 2(a)) as well as the one-dimensional
sections (figures 2(b) and (c)) can be obtained.

The total differentially scattered intensity RS for
monochromatic radiation for every position of a sample with
homogeneously distributed Coulomb defects contains both a
coherent, RB(q), and a diffuse, RDS(q), components [14]:

RS(�q) = RB(�q) + RDS(�q) (1)

where q is the distance from the nearest RELP.
Using the corresponding expressions for RB(q) and

RDS(q) obtained in [14] for a real crystal and integrating them
over the exit angles of a diffracted beam, one can determine
the value of an intensity registered by the TCS. This intensity
IS depends on the angular variables, �ϑ ′, �ϑ :

IS(�ϑ,�θ
′) = IB(�ϑ,�ϑ ′) + IDS(�ϑ,�ϑ

′). (2)

The coherent IB and diffuse IDS components for every
point of the isodiffuse map of the DS may be written for

Table 1. Structural characteristics (r0, n0) of precipitates in GaAs
films dopped with Si as determined by the two independent methods.

Fitting the theoretical CDR to
experimental ones, 400 reflection

Sample
number r01 (µm) n01 (cm−3)

1 2.5 5.0 × 106

2 2.0 1.5 × 108

Note: the microdefect radii r02 also
determined from intersection point q0 of
the I symDS = f (q) function with abscissa
axis [16] are, respectively, 1.5 and 2.1 µm
for samples 1 and 2.

the dispersion-free scheme of the TCS, i.e. (n, −n, n) in the
following way:

IB(�ϑ,�ϑ
′) = I0

∫
dx RM{b−1

M [b−1
S (x −�ϑ)

−�ϑ]}Rcoh[b−1
S (x −�ϑ)]RA(x −�ϑ ′) (3)

IDS(�ϑ,�ϑ
′) = I0

∫
dx RM(x)

∫
dx ′ rdiff (kx, kz)

+RA(x
′ −�ϑ ′). (4)

Here x is the angular coordinate of the deviation of the
refracted beam from the exact Bragg position in a diffrac-
tion plane. Characteristics RM(q), RA(q), bM and bS stand
for the reflection coefficients of the monochromator and anal-
yser, the geometric parameters of asymmetry diffraction for
a monochromator and specimen respectively. The func-
tion rdiff (qx, qz) represents the differential diffuse compo-
nent RDS(q) integrated over the region of vertical divergence,
ϕ = ky/K:

rdiff (qx, qz) = 1

K

∫
dqy RDS(q) (5)

where K is the wavevector, K = 2π/λ, of the incident radia-
tion with intensity I0. The qx and qz components of the vector
�q are situated in the diffraction plane ( �K, �H). At the same
time these vectors are oriented, respectively, in the surface of
sample, qx , and perpendicular to it, qz. They are given by

qx = K(2�ϑ −�ϑ ′) sin ϑB

qz = −K cosϑB�ϑ
′. (6)

The profiles (section view scans) of the measured intensity
distributions at a fixed position of a sample, �θi = constant,
as a function of the deviation of crystal-analyser�θ ′ from the
exact Bragg position, can also be obtained by means of a TCS.
ϑ–2ϑ scanning in this unit enables the coherent component
of reflectivity at the zero positions of the sample and analyser
also to be analysed.

The expression for the coherent component of the
reflection coefficient Rcoh(�ϑ) of a sample with a
homogeneous distribution of defects [14], used to calculate
the intensities (3), (4), has the following form:

Rcoh(�ϑ) = ζ(L−
√
L2 − 1) (7)

L = [z2 + (g0 + h)2 + [(z2 − (g0 + h)2 − E2(1 − κ2 − a2)]2]

+4(z(g0 + h)− E2(p0 + d)]1/2]/[E2[(1 − κ2
0 − a2)2

+4(p0 + d)2]1/2]−1
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Figure 4. Experimental (a) and calculated (b) TCS maps (contours of lines of equal intensity) close to the 004 RELP for sample N2. CuKα1

radiation. (c) and (d) correspond to the case of an almost perfect crystal (n = 103 cm−3) and heavily distorted sample (n = 109 cm−3). The
radius of these defects is the same in all diagrams. The contour levels are 10 000, 5000, 100 and 5 counts s−1.

z = �ϑ sin2 ϑ

C ·0h
√
b

ς = |CEχh +�χδh0|/|CEχ−h +�χδ0h|.
Here, parameters g, κ and p are the same as in

perfect crystal theory and take into account the absorption
of coherent waves due to the inelastic scattering processes
(photoelectric absorption, Compton effect, thermal diffuse
scattering). The parameters h, d and a take into account
the additional absorption of the coherent waves due to DS
on defects, characterized by µds and µ∗

ds . If the dispersion
corrections to the Fourier coefficients of a susceptibility
χ remain in the approximation for a semi-infinite crystal
�χδGG′ = P δGG′ − iµδGG′/K are denoted by

pGG′ = ReP δGG′/(CE)

and

mGG′ = −ReµδGG′/(KCE)

and the approximate equalitiespoh ≈ ph0 andm0h ≈ mh0 hold,
then these parameters can be represented by

h = (mhh +m00/bS)
√
bS/(2C|χrh|) d = mh0χ

′
rh/|χrh|2

χ ′
rh = Re χrh a2 = (m2

hh − p2
h0 − χ ′

rhph0)/|χrh|2

E = exp(−LH).
The diffuse component of the reflection coefficient

RDS(�ϑ) of a crystal with homogeneously distributed defects
after integration over the output angles can be represented [14]
as

RD(�ϑ) = Fdin(�ϑ)µds(k0)γ0

2µi(�ϑ)
(8)

µds(k0) = nC2E2m0J0(k0) m0 = πa3(H |0h|/λ)2/4

J0(k0) = b2 ln
e(k2

m + µ2
i )

k2
0 + µ2

i

+ bs

(
k2

0

2k2
m

− 1

)

for |k0| � km
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J0(k0) =
(
b2 − 1

2
b3

)
k2
m

k2
0

for |k0| � km. (9)

Here H and n stand for the reciprocal lattice vector and the
concentration of defects respectively; here, the defect radius e
is the base of natural logarithm,

k0 = K�ϑ sin(2ϑ) km = 2π/r0

b2 = B1 + B2 cos2(ϑ/2) b3 = B2 cos2 ϑ(1 − 2tg2ϑ)/2.

For the spherical cluster model [16] the following expressions
hold:

B1 = 0 B2 = (4πAcl/a3)2

Acl = <εr3
0 < = (1 + ν)/[3(1 − ν)]

ε is the deformation parameter and ν denotes the Poisson ratio.

3. Experimental details

The two-dimensional intensity distribution maps for GaAs
films heavily doped with Si were measured by the three-crystal
Philips diffractometer at the Institute of Physics PAS, Warsaw
(figure 1). The �ϑ profiles, i.e. the diffraction reflection
curves, CDR, obtained without an analyser as well as theϑ–2ϑ
profiles for fixed positions of sample �ϑi , were taken for the
200, 400 and 600 reflections. The corresponding parameters
for microdefects in the films under investigation (radius r0 and
concentration n0) were determined by fitting the calculated
reflectivities [15] to the experimental CDR as well as the maps
of isointensity contours in a reciprocal space.

The Si concentration, nSi , in the GaAs films was
determined by means of second ion mass spectroscopy
(SIMS) to be 2.5 × 1019 and 1.6 × 1020 cm−3 for
samples 1 and 2 respectively. These values considerably
exceeded the concentration p of charge carriers (holes)
p = 2–5 × 1018 cm−3. The difference between two values
testified for large quantity of silicon atoms situated in an
electrically passive interstitial positions. The thickness of
samples 1 and 2 was rather large, i.e. 13 and 15 µm, which
provided the possibility the reflectivities from the epitaxial
films without taking into account scattering from the substrates
to be registered.

4. Results and their discussion

Let us consider first the experimental results concerning the
fundamental reflection 400 (points in figure 3) which shows
the calculated rocking curve (CDR) 1 shown for sample 1. One
can see relatively good agreement between the experimental
and calculated CDRs obtained from formulas (1)–(9) of the
dynamical theory of scattering by homogeneously distributed
Coulomb deformation centres [14, 15]. One should stress here
that these formulas also describe the behaviour of the DS
component in the diffraction maximum region both for r < ?
and r > ? (? is an extinction length distance).

The characteristics of microdefects in two GaAs:Si/GaAs
films (r01 and n01) determined by fitting the theoretical CDR
curves to the experimental points are given in table 1. These
happened to be close to those for r02 = 1.5 µm, obtained
from the value of the scattering vector q0 as determined from
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Figure 5. The experimental θ–2θ slice scan of the intensity
distribution (triangles) as registered along the line parallel to the
vector H400 taken at (�ϑ = 0.030) for sample 3. The result of this
scan calculated for r = 0.38 µm and n = 5.5 × 109 cm−2 is
depicted by the solid curve.

the known method of the intersection point determination for
the plot of RDS = f (ln�ϑ) of the differential DS intensity
with an abscissa axis [16]. Here RDS and �ϑ , respectively,
stand for the differential DS component of reflectivity and the
angular deviation of the measured point from a RELP.

There was satisfactory agreement between all of the
independent experimental values of radius r0 and concentration
n0 of microdefects, obtained using the new analytical relations
between the differential diffuse as well as coherent scattering
components of the intensities, both integrated over the Ewald
sphere [14, 15], and the characteristics of the microdefect
structure testifies that the theory describes properly an x-ray
interaction with the studied films.

One of the experimental isointensity maps of the two-
dimensional distribution of the DS intensity registered near
the 400 RELP together with previously mentioned ‘resolution
stars’ due to the coherent part of the CuKα1 scattering
is shown for one of the films in the figure 4(a). The
corresponding theoretical map (figure 4(b)) as calculated
by formulas (1)–(9) is in qualitative agreement with the
experimental ones (figure 4(a)). It was not possible to observe
the characteristic minimum of the intensity distribution known
for the case of spherical clusters due to the presence of
the coherent scattering component. This minimum is only
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seen in the calculated map (figure 4(d)) for the case of the
heavily distorted crystal (n = 109 cm−3) (kinematical limit of
scattering). We have also calculated the intensity distribution
for the almost perfect crystal (n = 103 cm−3) shown in
figure 4(c) in order to compare two limit cases (perfect as
well as kinematical scattering crystal when the dynamical
‘resolution star’ is absent).

Quantitative agreement between experimental and
theoretical data was shown in slice scans made from the
experimental maps only. However, one can compare
quantitatively different slice scans of a measured map. One
such section taken along the line parallel to the diffraction
vector H in the experimental map registered for another
sample is shown in figure 5. The values of the radius r
and concentration n of precipitates obtained by the fitting
procedure for these two sections of the sample map are,
respectively, 0.83 µm, 3.2 × 108 cm−3 and 0.38 µm,
5.5 × 109 cm−3. The first group of parameters (larger radius
and relatively lower concentration of defects) determines the
level of the intensity registered more closely to the RELP 400.
The second group of parameters describes the value of an
intensity registered further away from the RELP.

5. Conclusion

Summarizing the results obtained in this paper one can note
that the experimental as well as the calculated two-dimensional
isointensity contours maps registered by the TCS in GaAs
films heavily doped with silicon are in qualitative agreement.
For different sections of the maps quantitative agreement was
shown. Using a corresponding fitting procedure the parameters
of the Coulomb deformation centres (precipitates) were also

determined. Precipitates of various sizes and concentrations
were shown to contribute to the intensities measured in
different sections of the TCS maps.

The quantity of silicon atoms in GaAs (Si) films
evaluated from values of the average radius and microdefect
concentration is close in order of magnitude to that determined
by SIMS.
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