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A new approach to calculating the coplanar N-beam X-
ray dynamical diffraction in multilayered structures has been
presented. The theory produces adequate results in the wide
range of angles, including the grazing incidence. It can be applied
to calculate the reflected beam and diffraction by thick layers. It
can also be used to take into account practically any number of
reciprocal lattice sites that participate in diffraction.

1. Introduction

Modern electronics develops towards the miniaturization
of the characteristic dimensions of integrated
microcircuit components. In so doing, not only do
the difficulties connected with the creation of such
nano-sized structures grow, but also the difficulties
associated with the monitoring of their geometry and
composition.

One of the basic tools for non-destructive structural
analysis is the diffraction of X-rays. Most techniques
that are used nowadays for analysis are based on
the solution of the corresponding inverse problem
in the framework of the kinematic or two-beam
dynamical theory. Both theories include a plenty of
simplifications and, being applied to the structures with
thick layers, in the case of the wide-angle diffraction
or the simultaneous diffraction from several sets of
crystal planes, and so on, produce incorrect results.
Therefore, it is often necessary to apply more correct
theories, with a smaller number of simplifications.
Moreover, in order to improve the accuracy and to
extend the angular range of analysis, wave vectors
in the medium should be determined numerically
[1].

In this work, we expound the theory of the multiple-
beam diffraction of X-rays in layered structures. It
is based on works [2, 3] dealing with the multiple-
beam diffraction in single-layered structures, and on
works [4-6]. The results of the latter were also
taken into account while solving the problems with
thick layers [4] and in the grazing geometry [7].
Some useful ideas concerning the solution of the
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dispersion equation have been borrowed from work
[8]-

Most often considered is the coplanar multiple-
beam diffraction of X-rays [2]. That is why just
this case is examined in this work. Moreover, such
a consideration allows the time of calculations to
be reduced by several times, which is especially
important in the case of the automated fitting of
spectra.

2. Dispersion Equation

In the framework of the dynamical theory, X-rays
are regarded as electromagnetic waves. Therefore,
assuming that the conductivity of the medium and
the influence of its free charges are absent (which is
eligible for X-rays [9]), expanding the polarizability
of the medium into the series of its Fourier
components (xp—p), and trying the solution of the
relevant Maxwell equations in the form of a Bloch
wave, we obtain the system of equations for the
nonzero strengths Ej of the waves in the crystal

[9]:

|kn|*Ep — K2E), -

— gz~ ZXh—pEpa (1)
p

where K = ¢ = 2% is the length of the wave

vector in vacuum, k = nK is the length of the wave
vector in the medium with the index of refraction n ~

v1+ Xo.

Let us change over to the dimensionless coordinates

kn h

K—)kh, f_)h’ (2)

where h is the length of the reciprocal lattice vector.

Taking into account that, in reality, there can be
the infinite number of wave fields in the crystal, and NV
waves of them can turn out strong enough, the wave
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amplitude at the point which is described by the radius-
vector 7 looks like

N-1
E(F) = Z By, exp(iky ).
h=0

Then, in the coplanar case, Eq. (1) reads

(kj —n*)Ep = Z Xh—pEp. (3)
p#h

Equation (3) divided by the amplitude of the incident
wave and written down in the matrix form looks like

ApE =0, (4)
where
kg —n*  —x0,-1 —X0,—2 —X0,~(N—1)
—X1,0 k} —n? —X1,-2 —X1,—(N—-1)
Ap=| —x20 —X2,-1 k3 —n? —X2,~(N-1) |5 (5)
_XN .1.0. _XN .1. .1. _XN 1 2 ...... ];2. . _n2
-1, —1,— —1,— N-1
1 the normal. It is evident that, if the wave field equals
c1 zero, h = 0 and kg = Ky + Ke. Using the notation
E= C2 ; (6) introduced and taking into account normalization (2)
e that was adopted above, we obtain
CN—1

and ¢; = E} /E} are the coefficients.
In accordance, the dispersion equation in the general
case looks like

Ap = 0. (7)

It is rather inconvenient to try wave vectors in the
form, which they have in Ag, because, on finding their
lengths, one would have to determine their directions
separately. Therefore, let us take advantage of the fact
the tangential component of the wave vector keeps its
length on the refraction. We introduce the quantity e
which characterizes the difference between the normal
components of wave vectors in the medium, kj, and in
vacuum, K (Fig. 1). Then,

Eh:I?0+ﬁ+K6ﬁ, (8)

where £ is the corresponding diffraction vector, I?O is the
wave vector of the incident wave, and 7 is the vector of
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k2 = (§0+H+sﬁ) (§0+72+5ﬁ) _

:1+2(5‘0-ﬁ)+2s(§o-ﬁ)+2s(i2-ﬁ)+h2+52,
(9)

where S} is a unit vector directed along Ko: Sp = I?O/K.
It is obvious that

(50 -ﬁ) =cos (90° — a) = —sina,
(50 l_i) = hcos (a+90° — ) = —hsin(a — ),

(ﬁ ﬁ) = hcos g,

where « is the angle between the incident beam and the
surface, and ¢ is the angle between the vector h and a
normal to the surface. Therefore,

ki =&+ 1—2esina,
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ki =&+ 1+ h? — 2esina — 2hsin (o — @) + 2ehcos p.

The sought quantities are

ky —n® =&? —2sina-e+ (1 —-n?),

ki —n? =e>+2(hcosp —sina) e+

+ (1 =n®) +h(h—2sin(a—¢)).

Then, the dispersion equation (7) reads

1 0 0 0 —2sina 0 0
010 0 0 2 (hy cosp; —sina) 0
Ap=¢2l0 0 1 0 +¢ 0 0 0 +
0 0 O 1 0 0 2 (hq cosp1 — sina)
(10)
1—n? —X0,—1 —X0,—(N—1)
—x1,0 1=—n?+hy(h —2sin(a—¢1)) —X1,—(N—1)
+]1 —Xz2o0 —X2,-1 —X2,—(N—1) =0.
—XN=1,0 —XN—1,-1 1—n%+ hyx (hy — 2sin (a — @n))

In the matrix notation,

Ap=¢e’T+eA+ B, (11)

where [ is the identity matrix, while A and B are the
corresponding matrices from Eq. (10):

A= {5ij'2(hiCOS(pi —sina)},
1=7:

B:{i#ﬁ

J,0=0,... ,N—1, hg =0, and ¢y = 0.
Substituting Eq. (11) into Eq. (4), we obtain the
expression

1 —n2+ h; (hy — 2sin (a — ¢;)),
—Xi,—j»

e’IE +¢AE = ¢ (eIE + AE) = —BE, (12)
which, after introducing the notation

elE = Eg, (13)
looks like

e(Es + AE) = —BE. (14)
Combining Egs. (13) and (14), we obtain

(5 )2 3)(5)

Equation (15) comprises the generalized problem
to find the eigenvalues ¢ and is solved with the
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help of standard algorithms (for example, using the
routines that are included into the NAG or IMSL
libraries, or the programs presented at the site
http://www.srcc.msu.su).

The solutions of this equation are 2N eigenvalues e
and N x 2N eigenvectors that are the wave amplitudes
of all the wave fields. Nevertheless, those wave vectors
must be normalized by dividing each of N columns by
the first value in the column, which is the amplitude
of the incident wave and should be reduced to unity.
Afterwards, one has to determine N x 2N normal
components of the wave vectors:

kp- (Eh . —ﬁ) =sina — € — h; cos ;. (16)

Thus, the problem of determining the wave fields
in the given substance becomes resolved. Now, let us
find the exact values of the wave fields and expand this
problem onto the structure that consists of M plane-
parallel layers (a superlattice). For this purpose, we must
determine the proper boundary conditions.

3. Application of Boundary Conditions

The boundary conditions for electromagnetic waves are

the continuity of the tangential (parallel to the surface)
components of the electric, E, and magnetic, H, fields.
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This formulation gives the following equations at each
interface [10]:

where ¢,, are the coefficients to find, and k., are the
normal components of the wave vectors.
Conditions (17), where the attenuation of the wave

aN—1 . . . . .
owing to its absorption in the layer is taken into account,
E cnFo, = const, .
give
n=0
SmFmEm = m+1Em+1 (18)
aN-—1
E cnk-nEon = const, (17)  for the interface, where FE,, is the column vector of
n=0 strength amplitudes in the m-th layer,
Co,0 Co, 1 Co 2N—1
C1,0 C1,1 C1 2N—1
CN-1,0 CN-1,1 CN—1 2N-1
C0,0Rz 0,0 Co, 1Rz 0,1 Co 2N—-1Rz0,2N—1
Cl,oku,o C1,1kz 1,1 C1 ,2N—1kz 1,2N—1
cN—1,0k: N—1,0 CN-1,1k:N—1,1 CN—1 2N-1k: N—1,2N—1
Fin = 6;j exp (—ikéthm) . (20)

tm is the thickness of the m-th layer, and kj, stands for
2N solutions of the dispersion equation (the first row of
the matrix k.) which correspond to the incident wave.

In order to find the values of the wave amplitudes
in the whole structure, we have to solve the matrix
equation

Ey= Sy SiFiST Sa s - Syt Su @ En, (21)
1 0 0 1 0
0 1 0 0 1
s | 0 0 1 0 0
"7 | K.o © 0 —-K.o 0
0 Kzl O O _Kzl
0 0 K.n 0 0
898

where M is the number of layers (subscript 0
corresponds to air, M to the substrate), <I>Sg L~
d;j €xp (iijK 20 2V s the distance between the

top (U) and the bottom (L) surfaces of the m-th layer,
Ej is the strength amplitude in air, Sp is the matrix
of boundary conditions on the structure surface which
equals
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in the Bragg case,

By =

(23)

E, is the amplitude of the incident wave (usually, it is
accepted equal to unity), Eg is the amplitude of the
wave reflected from the surface; Ey,... ,En_1 are the
amplitudes of the diffracted waves, K,y = 79 = sina,
2

\/1 — (cosa — hsing)

The solutions of Eq. (21), obtained in the grazing
geometry or for thick layers, are characterized by
large errors, because the matrix F;, includes the equal
numbers of increasing and decreasing exponents (a half
of the dispersion equation roots has negative imaginary
parts, and the other half has positive ones). Therefore,
we resort to the technique that was proposed in work
[5].

First, let us sort the roots of the dispersion equation
in the descending order of their imaginary parts, i.e.
the first rows of the corresponding matrices C), and k..
Secondly, let us carry out the renormalization

and thE—’yh:

En,=9%LE,, (24)

where ®L is the wave phase on the bottom interface of
the m-th layer. At last, let us introduce the matrix

Xtt Xtr B
X = ( ) =S.1 Sm.

Xrt xrr
into consideration. Then, Eq. (18) can be written down
as

E, = XerlFerlEerl-

(25)

(26)

Taking the sorting of the roots described above into
account, the first N elements of the matrix E,, represent
incident waves, and the other N elements correspond
p— Tm
- ()
For example, for air, To = (Eo 0 0...0) and Rg
(Es E1 Es...En_1). Then, Eq. (26) looks like

Tm+1 )
Rerl

(2)-(% ) (5 ) (i)

Xrt xrr
where Fy and F_ are the diagonal N x N-matrices of
form (20) which include either increasing or decreasing
exponents, respectively.

to reflected or diffracted waves, i.e. E,,

ISSN 0508-1265. Ukr. J. Phys. 2006. V. 51, N 9

Furthermore, let us introduce the matrices

Mt — (F+)_1 (Xtt)—l ’

Mtr _ _MttXtrFL

M = Xrt(Xtt)_l’

M = (X’I’"I‘ _ M”XW)F, (28)
and rewrite Eq. (27) in the form
Tm+1 B Mtt Mtr . Tm (29)
Rm - Mrt MTT Rm+1 .
Having introduced the matrices
Wrtrf = AmWrtrf—la
Wtr _ Mtr_+_A Wtr 1M’I’"I‘
Wyt = Wit + By Mpiwh
W, =B, M.,
T T -1
A= MU (1= W)
rr T T -1
By, = m—1 (1 - Mthmt—l) ) (30)
we obtain
Tm . th Wtr TO
<RO>_<WW€ Wrr>'<Rm . (31)

As a result, the reflection from the crystal is
described by the matrix equation

Ry = W}k, (32)

4. Solution Routine
In order to calculate the intensities of X-waves diffracted

by a multilayered structure, one has to execute the
following actions:
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Fig. 2. Example of the wide-angle diffraction by a superlattice (reflexes 200, 400, and 600, from left to right). The solid curve was

obtained in the framework of the multiple-beam theory and taking the reflected beam into account. The dotted curves depicted the

results of the ordinary two-beam theory

1) Knowing the matrix S for the previous layer, find
S-1 | (for air, Sy is given by Eq. (22)),

2) Solve the dispersion equation (16) and find the
matrices kp, and ¢, for the m-th layer,

3) Construct the matrix S,

4) Find X, = S;,Y S,

5) Construct the matrix F_ for the first N roots and
the matrix F;l for the rest,

6) Calculate the matrices M,,,

7) Recursively, find W,,,. For air, Wit = I, W™ =
Wit =0, and W{" = 0. For the first layer, Wit = M,
Wir = M, Wit = Mt, and WI" = M]",

8) Find the coefficient of diffraction from the
structure under investigation

Egr Ey
FEq 0

Ry = Es = }{,t . 0 ,
En_1 0

ie. Eg = W;\}t[O] [O], and Ep; = W[Z + 1] [0],
9) Find the intensity % = 22| RJ?,
10) Obtain the dependence of the intensity on the

angle of incidence.
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In Fig. 2, the so-called wide-angle diffraction of X-
rays by a layered structure is depicted. Four sites of the
reciprocal lattice — 000, 002, 004, and 006 — are assumed
to take part in diffraction.

5. Conclusions

The dynamical theory of the interaction of X-waves with
a substance has been developed in the case where several
sites of the reciprocal lattice take part simultaneously
in the formation of a diffraction pattern. The theory
proposed differs from the theories developed earlier in
the following items:

— our variant leads to the correct interpretation of
experimental data obtained in the grazing geometry;

— the problem of exponents that infinitely increase in a
certain angular range has been resolved;

— in the course of solving the dispersion equation, a new
variable was introduced; this variable allows the errors
that arise while calculating the diffraction from a large
number of reciprocal lattice sites to be avoided;

— the dimensions of the matrices which describe the
boundary conditions became lower; this results in the
increased rate of calculations;
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— the solution is extended onto the angular range far
from the exact Bragg position;

— the problem was solved with a minimal number of
simplifications, namely, the plane-wave approximation
for waves which transmit through the crystal, coplanar
geometry, and o-polarized radiation.

In the nearest future, the theory of the multiple-beam
diffraction in layered structures will be extended onto
a non-coplanar geometry and an arbitrary polarization
state.
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KOMIIJTAHAPHA BATATOIITPOMEHEBA JIMHAMIYHA
TEOPIA IU®PAKII X-TIPOMEHIB
VYV IITAPYBATUX CTPYKTVYPAX

O.M. €¢ganos, B.Il. Kaadvko, B.®. Mauyain
PezwowMme

Po3Buneno xommnnamapay Teopiro guuHamiunol mmdpakmii  X-
NpoMeHiBy 6araTomapoBUX CTPYKTypax ajs N CHIBHUX XBUJIb.
Teopist agexkBaTHA [JIsI MIUPOKUX KYyTOBUX JiaNa30HIB, KOB3HOI reo-
MeTpil, pO3paxyHKy BiAOHTOTO MpOMeHs, A Oyab-gKOI TOBITUHA
mapiB i IpakKTUIHO GYIb-AKOI KiJIBKOCTI TOYOK OOEpHEHOTO IIpO-
cTOpy, 1m0 6epyTh y4acTh y audpakiii.
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